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Abstract

It has been shown that perturbing the input
during training implicitly regularises the gradient
of the learnt function, leading to smoother models
and enhancing generalisation. However, previous
research mostly considered the addition of ambient
noise in the input space, without considering the
underlying structure of the data. In this work, we
propose several methods of adding geometry-aware
input noise that accounts for the lower dimensional
manifold the input space inhabits. We start by
projecting ambient Gaussian noise onto the tangent
space of the manifold. In a second step, the noise
sample is mapped on the manifold via the associated
geodesic curve. We also consider Brownian motion
noise, which moves in random steps along the
manifold. We show that geometry-aware noise
leads to improved generalization and robustness
to hyperparameter selection on highly curved
manifolds, while performing at least as well as
training without noise on simpler manifolds. Our
proposed framework extends to learned data
manifolds.

Code: github.com/albertkjoller/geometric-ml

1 Introduction

One of the most intuitive and practical methods to
improve the generalisation properties of a learnable
model is to consider data augmentation techniques
[1]. During training, new data samples are created
from given ones, sharing the same features and
labels. This approach has been extensively used
with image data, for example through adjusting the
illumination, changing the orientation or cropping.

Classic machine learning research has already
established the influence of input noise on gener-
alisation performance [2, 3]. One widely studied
technique is adding Gaussian noise to the inputs,
which leads to a smoothness penalty on the learnt
function [4, 5], however, these works do not take
into account the structure of the input data.
A fundamental observation in modern machine
learning is the manifold hypothesis: it states that
high-dimensional data tends to concentrate around
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Figure 1. Noise injection is a data augmentation
technique that can improve generalisation. For a data
point (O) lying on a lower-dimensional manifold, sam-
pling noise in the ambient space (@) almost surely de-
viates from the input manifold whereas a sample from
a geometry-aware noise process (#8) stays on the mani-
fold and respects the data geometry. Illustrated of the
biconcave disc that resembles a red blood cell.

a lower-dimensional manifold in the ambient space
[6, 7]. In the context of noise-based learning, this
has the implication that, with high probability,
Gaussian noise will be almost perpendicular to
the manifold [8]. Hence, adding Gaussian noise
to the data leads to unlikely or non-informative
augmented data samples.

Additionally, many real-world problems require
learning functions on a known manifold rather than
the unconstrained Euclidean space. Weather and
climate observations naturally live on the surface of
the sphere, which approximates the shape of the
Earth. In cell biology we might consider red blood
cells, which can be approximated by a biconcave
disc [9]. Or in brain imaging, quantities like cortical
thickness and grey matter intensity are measured on
the cortical surface [10]: although the cortex can be
mapped onto the sphere, it is actually highly wrinkly.
In such settings, applying perturbations or learning
representations that ignore the intrinsic manifold
structure can lead to deceptive results as Euclidean
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distances in the embedding space fail to capture the
true distances between points: two points which
might be close with respect to the Euclidean metric
can be far apart when travelling along the manifold
surface. This highlight the necessity of geometry-
aware methods that respect the manifold structure
when perturbing data as an augmentation technique.

In this paper, we propose geometry-aware
noise injection strategies as a data augmentation
technique and show their benefits compared to
ambient space noise injection. We consider three
such strategies — tangent space noise, geodesic noise
and Brownian motion noise — and demonstrate their
effect on manifolds embedded in R3, namely the
Swiss roll and families of spheroids and tori.

Our contributions include:

e definitions, derivations, and implementations
of geometry-aware input noise for various
parametrised manifolds and their deformations,

e cstablishing the implicit regulariser of adding
manifold-restricted input noise,

e empirical demonstration that geometry-aware
noise improves generalisation and robustness
over manifold-agnostic noise.

2 Preliminaries

We consider a dataset of N points {x,,yn} N 1,
where the inputs &, € X = RP are assumed to
lie on an embedded d-dimensional manifold M with
d < D, and the outputs y,, € Y may be either con-
tinuous or discrete. Our goal is to learn a function
fo : X = Y, typically parametrised by a deep neu-
ral network with parameters & € RX. The model is
trained by minimizing the empirical loss

N
E(.’I},H) = Z e(f@(mn)vyn)7

where £ : ) x Y — RT U {0} is a loss function,
often chosen as the mean squared error (MSE) in
regression settings. For simplicity of notation, we
write © = {z,}Y_; and L (z) = L (x,0).

2.1 Gaussian Input Noise

As mentioned, several previous works consider
Gaussian input noise [2, 4, 11, 12]. In this section,
we summarise the previous analysis and show
that adding Gaussian noise to the input during
training is equivalent in expectation to Tikhonov
regularisation [13].

Consider an input data point x,, € X, which we
perturb with noise following a normal distribution
€ ~ N(0,0%Ip) for ¢ > 0. Then the second-order
Taylor expansion of the loss function £ (x) is given
by:

L(x+e) ~L(x)+e VoL(x)+ %GTHLE. (1)

We take the expectation of the Gaussian noise dis-
tribution and get

o2
Ec[L(x+e€)]=L(x)+ 7Az£ (x), (2)

where A is the Laplace operator (trace of the Hes-
sian). Using the chain rule, this term expands to:

N
AL (@)= |IVafol@n)l® (3)

1 N

when choosing ¢ to be the MSE. When the func-
tion interpolates the training data points, that is,
fo(xn) = yn, the second summand in Equation 3
vanishes. Thus, after plugging this back into Equa-
tion 2, we see that adding input noise is equivalent
(in expectation) to optimising a regularised loss on
the form £ (x) + R (x,0), with R being the Tiko-
honov regulariser

9 N
R(@.0) =% Y IVafol@)l’. (&)
n=1

Thus, a small gradient is incentivised at each training
point, which implies that the optimisation process
will converge to parameters 8 for which the function
fo= is flat in the neighbourhood of the given data.

2.2 Riemannian Geometry

In this section, we give a brief introduction to the
tools we use from Riemannian geometry [14]. The
reader who is already familiar with Riemannian
geometry may skip this section.

Local charts. Plainly speaking, a manifold can be
seen as a d-dimensional generalisation of a surface.
It locally resembles the Euclidean space R¢, meaning
that for every point € M, we can find an open
neighbourhood around x which can be smoothly
mapped to an open set of R™. For completeness, we
include a more rigorous mathematical definition.

Definition 2.1 A manifold M is a Hausdorff space
such that for every x € M there exists a homeomor-
phism X : U — V' from a neighbourhood U > x
to an open set V. C R%. PFurther, we require these



charts to be compatible on the intersection of their
domains, i.e.

X10 X5 %oy Aws) : X2(U1 NU) CRY — R

is a smooth map.

The tangent space. InR3, the tangent plane of a
manifold is easy to picture: each point of the surface
is approximated with a plane in which the tangent
vectors live. In higher dimensions, we say that the
tangent space T, M of M at a point & consists of
the velocities of all curves on M passing through x,
that is, if v is a smooth curve on M parametrised
by time ¢ with

7(0) = =,

then
v =75(0) € TpM.

Assume we have a smooth parametrisation X : R —
RP. Then the Jacobian

s [0x ox
X7 0w Duy

is a function from R¢ to R?*? and the tangent space
at each point is spanned by the columns of Jx. At
every point & € M, any vector v € R” can be
orthogonally decomposed into a tangential and a
normal component as

v=vT7+v].

In Figure 2, we can see a manifold (the sphere)
embedded in R?, and the tangent space at a point.

Riemannian metrics. A Riemannian manifold
(M, g) is a smooth manifold equipped with a Rie-
mannian metric. A metric g of M equips each point
x € M with an inner product g, on T M. This con-
tinuous tensor field allows us to measure distances
and angles, and define geodesics along the manifold.

Assume we have a smooth parametrisation X :
R? — R3. Then the matrix valued function

Ji - Jx :R? - R?*?
induces a metric. For X(u) = € M and v,w €
TeM, let ,w € T,R¢ be such that Jx® = v and
Jxw = w. Then

gz (v, w) = UTJ;{Jx’w

is the induced metric. By abuse of notation, we will
often write g to denote the matrix J;Jx.

Geodesics. A geodesic is locally the shortest path
on a manifold. We can rewrite a curve

~y:ICR—M

on M as y(t) = Xoa(t), where a : I — R%is a curve
in the parameter space. Then ~ is a geodesic if and
only if « satisfies the following ordinary differential
equation (ODE) for all k =1,...,d:

n

=Y dilt)ey(t) - T alt),

ij=1

ag(t) =

()

where Fi—“j denote the so-called Christoffel symbols.
It can be shown that if M is a Riemannian manifold,
then for every € M and every unit vector e €
T, M there exists a unique geodesic 7, such that

'Ye(o) =, '.Ye(o) = €.

The exponential map. Intuitively, one can
imagine the exponential map like a function which
wraps aluminium foil (the tangent plane) around,
say, a bagel (the manifold). Despite the manifold
being curved and the tangent space being flat, at
any chosen point we can wrap a small part of the
tangent plane around a neighbourhood of this point
without folding it.

Using geodesics, for each € € M we can define a map
from an open ball Bs(0) C T, M to a neighbourhood
x € U C M on the manifold. We will call this map
the exponential map:*

Exp, : Bs(0) CTeM — U C M,

Exp. (v) = {v;(llvl) i vf§5<0>\{0},

In other words, the exponential map maps a vector
v € T M from the tangent space to the endpoint
of a curve on the manifold, v = ([|v[|), and the zero
vector to x.

3 Noise Injection Strategies

We consider three strategies of increasing complexity
for geometry-aware input noise: tangential noise,
geodesic noise and Brownian motion noise. The goal
was to create noise injection techniques which either
stay close to the manifold or, better, stay on the
manifold.

1Here, 6§ € RT ensures that the exponential map is a well
defined diffeomorphism. Loosely speaking, it is the largest
radius we can choose while guaranteeing that the geodesics
are well defined and do not overlap.



Figure 2. Noise injection strategies with increasing
level of conceptual complexity, i.e. ambient space noise
(@), tangent space noise (%) and geodesic noise (). The
Brownian motion strategy is visualised in Figure 3.

3.1 Projected Tangent Space Noise

The simplest method we will try is Gaussian noise
projected to the tangent space. Intuitively, this
takes a noise sample in the ambient space, € ~
N (0, UQ]ID), and pulls it closer to the manifold.

To isolate the tangential component e, we sub-
tracting the component € :

€ET —€— Z(e,nl) “n;,

(2
where {n;} is a set of unit vectors spanning the nor-
mal space of M. For more details we recommend
the classic textbook [15]. Equivalently, the tangen-
tial noise can be defined with projection matrix,
P=Ip-3, n;n; , as

er =Pe, €~ N(O,U2]ID) .

This allows for directly sampling tangent noise as

er ~N (O,O'QP) .

Regularisation perspective: We now analyse
how adding tangential noise et affects the model fg.
We proceed as in Subsection 2.1.

N
E[6¥H£6T] = ZE [eivmfg(wn)vmfe(il:n)—re'ﬂ
1 1:;71
5 Z 6'|' fe mn) yn) Aa:fe(wn)e—r]
n=1
N
ZHV fo(z)T]*.

The second summand again vanishes if we assume
that the model fg interpolates the target values

perfectly, that is, fo(x,) =y, foralln=1,... N.

When evaluating the first summand, we see that

€1 Vafo(xn) = €1 Vafo(zn)T + €1 Vafo(xn)L
—

=0

(6)

Combining our results, we obtain the regulariser

5 N
R(@.0) = 5 3 Ve folwa)rll”
n=1

This shows that the addition of tangential noise only
regularises the tangential component of fg.

3.2 Geodesic Noise

As explained in Subsection 2.2, at every & € M,
and for every v € T,zM there exists a geodesic
v : I — M such that v(0) = z, and ¥(0) = v.
All manifolds in our paper are complete, and hence
I =R, and ~ can be extended to the whole of R. This
allows us to generate points & near x by sampling
initial velocities and mapping them to the manifold
via the exponential map. We proceed as follows:

1. sample € ~ N(0,0%1p),

2. project € into the tangent space T, M as ex-
plained in Subsection 3.1, let

et = Pe,

3. evaluate v at ||eT]|, the new point is now
Y(llerl]).-

For a small step size o, we expect this to have a
similar effect as the tangential noise but may improve
robustness for increased step sizes. Details about
the implementation of this method can be found in
Appendix B.

T = EXpm(GT) =

3.3 Intrinsic Brownian Motion

Brownian motion (BM) is a stochastic process, which
has first been used to describe the random move-
ment of particles suspended in a fluid. Due to its
occurrence in nature, this provides a realistic way
of modelling how data points might move along a
manifold. In the parameter space of a Riemannian
manifold, the Brownian motion is defined by the
following stochastic process [16]:

1 d

2/detg

( )k-

where dB(t) is the standard Euclidean BM and ¢
is the time. The summands are referred to as the
drift term and noise term, respectively. Since the
Brownian motion on a manifold is generated by the
Laplace-Beltrami operator [17], which is intrinsic, it
is independent of the local charts [18].

duk( =

( det g gkl)dt (7)



3.4 Example: the Swiss roll

In this subsection, we will go through the computa-
tions for one example manifold, namely the Swiss
roll. The derivations for the other manifolds follow
a similarly approach. The Swiss roll is parametrised
as follows:

X :R? = R3 X(up,us) = (ausinuy, auy cosuy, us).

Here, a € R is a positive coefficient which deter-
mines how tightly the manifold is rolled. The metric
is then given by

(az(lg—u%) (1)) |

Tangent space noise. The unit normal vector at
each point (u,v) is given by

cosui — uq Sinuq
—sinuy — w1 COS U
0

1

\/1+u§.

To get tangential noise, we subtract the normal
component from the Gaussian ambient noise, i.e.

n =

eT =€—(e,n) n.

Geodesic noise. A curve on the manifold can
be obtained by taking a curve o : I — R? in R?
and mapping it on the manifold through X. Let
~: I — M be given by v(t) = X o a(t).

O[l(t) .
= *mal(tﬂ
(%) (t) = Q9 (0) + tas (O)

a(t)

Brownian motion. We start with a few pre-
computations. It is clear that

det(g) = a*(1 +u?),

0 1

Plugging it into Equation 7, we get:

g !

u 1
du1 _ 7@ (1+u?)? + \/CE /a2(1+u2) 0 .
dus 2 0 0 1

We remark that dB(t) = v/dt - € where € ~ N (0,1,)
is a noise sample in the parameter space.

4 Deformation of a Manifold
In the following, we briefly elaborate on the

underlying approach to constructing deformations
of manifolds which we will use in Section 5.
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Figure 3. Brownian motion is computed from an initial
point (O) in the parameter space (left), then mapped to
the manifold (right) via the chart X. The endpoint of
the Brownian motion on the manifold (%) acts as the
noisy observation.
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Figure 4. Illustration of the deformation process using
a flow field v; for increasing time steps. The base point
cloud is the sphere in R3.

We consider a vector field v for defining a time-
dependent diffeomorphism, ¢ : M x [0,T] — RP
that maps points from a parametrised manifold to
a deformed version of the manifold, M. This is also
known as a flow. The vector field induces the flow
through an ordinary differential equation:

L0 @) = v (6 (2) Q

b0 (0) =,

where © € M is a point on the parametrised man-
ifold. As our manifold is defined through local co-
ordinates, we can express points on the deformed
manifold as

&= o7 (X () € M,

which is obtained by integrating the ODE (8) up
to time T. We provide an illustration of such a
deformation process for the sphere in Figure 4. The
Jacobian of ¢; with respect to u at u = X ~!(z) is
given by

_ 00y (X (u)) _ O¢y () 0X (u)

J (1) :
®) ou ox ou
It can be computed by solving another ODE:
43ty =3, (03 (1)
dt u v u )
0X (u)
Ju (0) = ou ’
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Tllustrations of the manifolds and functions on manifolds that we consider. From left: Sphere,

SqueezedSphere, DeformedSphere, Bead, OnionRing and SwissRoll. Specifically, we use the deformation approach
described in Section 4 to construct the DeformedSphere from a parametrised unit sphere in R3.

where J, (t) = %&(m)) is the Jacobian of the

velocity field function. Thus, the metric g of M is

Jo (7)) 30 (T).

e
I

We can now sample initial velocities on the tangent
space Tz M at &, using (9) and generate geodesics
on the deformed manifold M.

This framework allows for highly expressive and
flexible deformations of any parametrised manifold
while ensuring invertibility. Previous research [19,
20] parametrise v, g with a neural network. Though
we in practice only consider a fixed parametrisa-
tion of such a network to generate diffeomorphic
deformations, our framework works for any map v;.
This opens new pathways to neural network settings
where a learned flow approximates the underlying
data manifold from which we can compute intrinsic
geometric quantities, which we leave for future work.

Implementation details. The Jacobian of the
vector field, vy, rarely has a closed form, however
we can compute it efficiently using automatic dif-
ferentiation. In practice, this allows us to evaluate
derivatives of deformed manifolds with respect to the
local coordinates of points on the manifold, without
manually deriving the expressions. This algorithmic
framework allows us to apply the technique to any
manifold as long as some parametrisation is available
and we have a differentiable ODE solver. In prac-
tice, we solve the flow equation numerically using an
explicit Euler scheme and compute Jacobians and
induced metrics with automatic differentiation. We
remark that higher-order ODE solvers could be used
for improved accuracy, yet the choice of the Euler
scheme is based on practical challenges with existing
toolboxes, for instance current incompatibility issues
between existing libraries.

5 Experimental validation
We test our hypothesis on a range of manifolds

visualised in Figure 5. We generate N = 200
training points on each manifold and train an

overparametrised 3-layer neural network with 64
nodes per layer to learn a specific function for
each manifold. We train for 500 epochs using a
learning rate of 1072 with a MSE objective. For
the DeformedSphere we only use N = 40 and a
learning rate of 0.005 for computational speed-up.
For each training step, we add either ambient
space noise, tangential noise, geodesic noise or
Brownian motion noise and compare to a baseline
network trained without adding input noise. We
treat the noise covariance o? as a hyperparameter,
and, in the Brownian motion setting, interpret it
as the total time of the process, i.e. T = o2. We
provide the average error per method relative to
the baseline’s MSE in Table 1 with uncertainties
given by the standard error of the mean computed
from 5 independent runs. We provide computations
for the geodesic equations and Brownian motion
along with the target functions for the parametrised
manifolds in Appendix A.

Our results show that geometry-aware noise
injection provides advantages to ambient space
noise on complex manifolds. In particular, geodesic
and Brownian motion noise not only yield lower
errors on ’wigglier” geometries - such as the
SwissRoll and DeformedSphere - but they also
exhibit greater robustness to the noise intensity
hyperparameter (Figure 6). This indicates that geo-
metric approaches can both improve generalisation
and reduce sensitivity to hyperparameter choices.

At the same time, performance never significantly de-
teriorates when using any noise strategy, compared
to the baseline trained without noise (Table 1). For
some manifolds simple ambient Gaussian noise can
suffice: we observe this particularly for manifolds
of which only a small part is problematic, such as
the Bead (the fat torus). Here, Gaussian noise only
leads to misleading samples near the genus. Since
the surface area of the genus is proportionally small,
the overall error remains low. The SwissRoll, on
the other hand, is sensitive to Gaussian noise ev-
erywhere, and hence our methods work better. For
completeness, we report results across all tested



Table 1. Relative mean squared error to the baseline (B) model trained without adding noise. We report results
for the optimal hyperparameter o for each strategy and manifold. We compare with ambient noise (A), tangent
noise (T), geodesic noise (G) and Brownian motion noise (BM). We highlight the best strategy per manifold in
bold. Adding noise does not improve performance for some manifolds, but results are included for completeness.

Sphere SqueezedSphere DeformedSphere Bead OnionRing SwissRoll
B 1.00 + 0.16 1.00 £ 0.15 1.00 £ 0.26 1.00 + 0.09 1.00 £ 0.19 1.00 £ 0.18
A 0.91 £ 0.10 1.01 £ 0.15 1.08 £ 0.26 0.99 £ 0.08 1.24 + 0.24 1.00 £ 0.19
T 0.98 £ 0.14 0.94 £ 0.17 1.10 £ 0.23 1.00 £ 0.09 1.13 £ 0.24 0.62 £ 0.07
G 1.00 +£ 0.16 1.01 £ 0.16 1.00 £ 0.25 0.99 £ 0.08 1.10 £ 0.21 0.47 £ 0.06
BM  1.00 £ 0.16 0.96 £ 0.18 0.92 £ 0.23 0.98 £ 0.09 1.13+0.18 0.46 + 0.06
manifolds, even when geometry-aware strategies do
not provide measurable gains.
SwissRoll
6 Related Work w

A recent work [3] surveys classical perspectives and
modern advances for how noise injection influences
learning . Bishop’s analysis [4] of Gaussian input
noise is restricted to considering the Gauss-Newton
part of the Hessian with the argument that the
non-linear modelling error (NME) vanishes at an
optimum [4]. The implications of this were recently
discussed in the paper [21], with the conclusion that
the neglected Hessian component can play a crucial
role in shaping the geometry of the loss surface.

Instead of assuming that the input points live on a
manifold, we can also enforce that the parameters
of the model belong to a manifold. A previous work
[5] analyses the impact of adding Gaussian noise
to weights of a parametric model . Other works
[22, 23] study orthogonal regularisers on the weight
matrices, promoting the columns to be orthonormal.
These constraints restrict the parameter space to
the Stiefel or Grassmann manifolds, which improves
numerical stability. This line of work highlights that
geometry can be injected not only through noise in
the input space but also by shaping the structure
of the model’s parameters. Another approach
to noise injection considers adding structured
noise to the gradient during training with gradient-
based optimisers for improved generalisation [24, 25].

In the context of Riemannian representation
learning, adding noise according to the structure of
the manifold stabilises results in the recent paper
[26]. This approach replaces the traditional en-
coder—decoder setup with a Riemannian generative
decoder. It directly optimises manifold-valued
latent variables via a Riemannian optimiser,
thereby avoiding the difficulties of approximating
densities on complex manifolds. By enforcing the
manifold structure during training, the learnt latent
representations remain aligned with the intrinsic
geometry of the data, leading to more interpretable
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Figure 6. Test loss as a function of noise intensity o
for different noise injection strategies. The geometry-
aware noise strategies that stay on the manifold, i.e.
geodesic noise and Brownian motion noise, show greater
robustness to the noise intensity compared to ambient
or tangential noise. All methods perform at least as well
as training without noise (dashed line).



models and stable training dynamics.

The tangent plane of a data manifold is approx-
imated through singular value decomposition and
used for sampling points in alignment with the data’s
structure in a recent work [27]. This resembles our
tangent space projected noise. For the methodology
of the geodesic noise, a closely related idea has been
explored in the context of Riemannian Laplace ap-
proximations for Bayesian inference in deep neural
networks [28, 29].

7 Conclusion

We have established several geometry-aware noise
injection strategies and demonstrated their need
through theoretical and experimental contributions.
Further, we have shown their qualities and short-
comings. In particular, we find that while ambi-
ent Gaussian noise is simple and may improve per-
formance on nearly Euclidean manifolds, it falls
short on more curved or ”"wiggly” manifolds, where
geodesic and Brownian motion noise provide clear
advantages. These geometry-aware strategies not
only improve generalisation, but are also more ro-
bust to the noise intensity. The latter reduces the
burden of hyperparameter tuning. Additionally, we
proposed a framework for deforming parametrised
manifolds to arbitrary manifolds, which extends the
use of our methods beyond standard benchmark
geometries. However, we remark that this added
flexibility currently comes with increased computa-
tional cost.

Limitations and future work. We expect
our approach to extend to higher dimensions. As
explained in the introduction, a large difference
between the dimensions of the ambient space and
the data manifold could lead to more dramatic
results as Gaussian noise samples will with high
probability be normal to the manifold. However,
this increases the computational complexity.

One direction we hope to explore is to consider
manifolds of which we have no explicit parametri-
sation. One approach is to approximate the data
manifold with a generative model, e.g. as previously
done with variational autoencoders [30] or explore
flow matching techniques as established in Section
4. Another promising direction for geometry-aware
noise for point clouds is topological data analysis
[31]. Lastly, an idea is to approximate the tangent
plane of a data manifold as in [27] and use it for
generating geodesics.
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A Computations on the exam- The second derivative of z is given by the following:

ple manifolds 52, ” (147«2)‘3( b2 CT4)

. . ar? d d?
A.1 Biconcave disc

16 (TR b 2
The biconcave disc yields an approximation of hu- d d? d? d4
man erythrocytes, as shown in [9]. Letting r = 02 /b Ger?
Vu? +v2, and let a,b, c,d be parameters, then the T2 1= (ﬁ R )

height function for the upper half is given by

A.1.3 Brownian motion on the biconcave

Ar2 b2 4 A
=i (on e ).

For the Brownian motion, we yield

Here, d describes the diameter, a the height at the |4 052 02 0%
centre, b the height of the highest point, and ¢ the dr(t) = 1 (W) dt
flatness in the centre. A parametrisation of the 2 (I+357)
. L 1
upper half of this surface of rotation is given by n — dB(t):
1422
X(r,0) = (rcosf,rsinf, z(r)). 38;2 o2
9297z 1 _ 2z
do(t) = % . (W) dt + %dB(t)z,

A.1.1 Tangential noise on the biconcave disc ri(1l+ 50

The tangent space is then spanned by for all 7 > 0.

X, - [COS 0. sin 6. 8,2] , A.2 Spheroids
or We consider manifolds which are squeezed spheres. For
Xy = [—7" sin @, r cos 9, 0] . a,c € R+, consider the parametrisation X : RZ &5 R®
given by
An standard computation shows that
X(u,v) = (asinusinv,asinucosv,ccosu).
2 4
% = _7& . (a + bL + cr) If a = ¢, then this gives the usual sphere. If a > ¢, then
or di/1 — %2 d d the manifold is a sphere squished along the z-axis. The
tangent plane is spanned by
a2 (2br  derd
+/1— 2 (d + d5> ) X. = [acosusinv,acosucosv,—csinul,

X, = J[asinucosv,—asinusinv,0].

and clearl
Y We then obtain the metric

or 2w or v a2 cos?u + 2 sin?u 0
ou r’ v 1’ < 0 a251n2u>'
The unit normal vector is now given b
& Y A.2.1 Tangential noise on the spheroid

d dz .
n = [5ercosf, —Gzrsind, 7] To obtain tangential noise, we note that the unit normal
r (%2 + 1) is given by
_ [esinusinv, csinucos v, a cos u]
A.1.2 Geodesics on the biconcave disc \/02 sin? u + a2 cos2 u '
btai . .
We obtain A.2.2 Geodesics on the spheroid
2
g(r,0) = (1 + % 02) ) A curve v = X o« is a geodesic on the spheroid if and
0 r only if a : T — R? satisfies
A computation shows that .. a’? — c*)sinog (t) cosai (t) .
p 0(1(15) (2 - ) 1(2) — 1( ) .G (t)2
) a2 cos? a (t) + ¢? sin® aq ()
9z 9“2
0z 0% t . 2
i) = _5”73(;22 (1) + La)Q 6(1)2, . a”sin o (t) cos aa (t) aa(1)?
14+ 52 1+ 35 a? cos? aq (t) + c2sin? o (t) ’
~~ 2r(t) 4 . cosaq(t) . .
ot) = - -0(t). t)y = —-2.——= t t).
(v L) (1) e (1da()
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A.2.3 Brownian motion on the spheroid

A computation yields the following result for the Brow-
nian motion.

a2 COS U
duy, (t) — |:251n u(a? cos? u+c? sin? u)2:| dt
0 k
S S— 0
+ <\/ a? cos? 16+c2 sin? u ) > dB(t)
asinu k
A.3 Tori

We also investigate different tori, some more like onion
rings, others more like beads. For coefficients a,c € RT,
they can be parametrised by X : R? — R3,

X (u,v) = ((a+ csinw) sinv, (a + ¢sinu) cos v, ccos u).

Here, ¢ describes the thickness of the handle and a the
size of the torus. To avoid self-intersection, ¢ is bounded
by a. Further, if ¢ << a, we have an onion ring, and if
¢ T a we have a rounded torus with a very thin hole.

A.3.1 Tangential noise on tori
The tangent plane is spanned by

X, =
Xy

[ccosusinv, ccosucosv, —csinu],

[(a + ¢sinu) cosv, —(a + csinu) sinwv, 0] .

This yields the metric

(e 0
9= 0 (a+esinu)?)"

The unit normal is given by

_ [sinusinv, sinu cos v, cosu sin? v]

V/sin? u + cos2 usin® u

A.3.2 Geodesic noise on tori

A curve v = X o« on the torus is a geodesic if and only
if « satisfies

i) = (a + csin alc(t)) cos a1 (t) . dz(t)z
. ccos aq (t) . .
Oég(t) = m . Oq(t)ag(t).

A.3.3 Brownian motion on tori

We obtain the Brownian motion terms

COS u

duk (t) — |:2e(a+(e)ﬂn u):| dt,
k

[ k),

B Implementation details

B.1 Geodesic noise

To simplify our computations, instead of sampling a
vector et ~ N (O,O'QP) in the tangent space, we can
also sample a vector € in the parameter space R? from

an adjusted distribution. In the following assume that
u € RY X(u) = ¢ € M, where X is a smooth
parametrisation of a regular manifold M. As previously
described, the Jacobian transforms vectors in the pa-
rameter space to the tangent space, i.e. for a vector
€ € T,R?, we have that

e=Jxec T, M
For the inverse relation, we obtain
€= gilJ ;e.
Consequently, if
e ~ N(0,06°Ip),
then for its tangential component it holds that
et ~N(0,6°P),
and for the pull-back it holds that
ér ~ N (0,0%  TXPIxg ), )

which follows from affine transformation properties of
the multivariate Gaussian distribution.
We now can find the curve o : R — R such that

Our new sample point is then
z =X (a(ller]))) -

This method is equivalent to the one described in Sub-
section 3.2. For simplicity, we ignore the injectivity
radius of the domain of the exponential map. This is
not a problem since we do not require injectivity for our
purposes and the manifolds we consider are complete.

B.2 Functions on the manifolds

For the Sphere, SqueezedSphere and DeformedSphere,
we select the target function as:

y=v
i.e. the second local coordinate.
For the Bead we select the target function as:
Yy = sinv
i.e. a periodic function of the second local coordinate.
For the OnionRing we select the target function as:
y=100-c-cosu =100 - 2
i.e. the scaled height of the manifold.
For the SwissRoll we select the target function as:
y=u

i.e. the first local coordinate, which is a linearly increas-
ing function along the roll.
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C Details on manifold defor-
mations

Recall the definition of the flow field from Equation 8:

d
aqst (X (u)) = ve (¢ (X (w))) .

We take the derivative with respect to the local coor-
dinates u and get

% <%¢t (X (u))) = %w (¢t (X (u))) )

which is equivalent to

d o 9
%%d)t (X (u)) = %Ut (¢t (X (u))) .

By using the chain rule on the right hand side, we get

d 0 o 81}75 (¢t ((II)) 0
Gt W) = TR e (X (w)
We get the Jacobian ODE by setting
S = 20X
vt (¢ (x))
Ju (1) ol N
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