
HOW REDUNDANT IS THE TRANSFORMER STACK IN
SPEECH REPRESENTATION MODELS?

Teresa Dorszewski∗, Albert Kjøller Jacobsen∗, Lenka Tětková, Lars Kai Hansen

Technical University of Denmark
DTU Compute, Section for Cognitive Systems
{tksc,akjja,lenhy,lkai}@dtu.dk

ABSTRACT

Self-supervised speech representation models, particularly those
leveraging transformer architectures, have demonstrated remark-
able performance across various tasks such as speech recognition,
speaker identification, and emotion detection. Recent studies on
transformer models revealed high redundancy between layers and
the potential for significant pruning, which we will investigate here
for transformer-based speech representation models. We perform a
detailed analysis of layer similarity in speech representation models
using three similarity metrics: cosine similarity, centered kernel
alignment, and mutual nearest-neighbor alignment. Our findings
reveal a block-like structure of high similarity, suggesting two
main processing steps and significant redundancy of layers. We
demonstrate the effectiveness of pruning transformer-based speech
representation models without the need for post-training, achieving
up to 40% reduction in transformer layers while maintaining over
95% of the model’s predictive capacity. Furthermore, we employ
a knowledge distillation method to substitute the entire transformer
stack with mimicking layers, reducing the network size by 95-98%
and the inference time by up to 94%. This substantial decrease in
computational load occurs without considerable performance loss,
suggesting that the transformer stack is almost completely redundant
for downstream applications of speech representation models.

Index Terms— Redundancy, Layer Similarity, Transformers,
Speech Representation Learning, Pruning

1. INTRODUCTION

Recent transformer-based speech representation models have shown
impressive performance in numerous tasks including speech recog-
nition, speaker identification, and emotion detection [1, 2, 3]. How-
ever, these models often come with significant computational costs
due to their large size and complexity. This paper investigates the
redundancy present within transformer layers of speech representa-
tion models, exploring the potential to prune or replace these layers

∗ Equal contribution.
This work was supported by the Pioneer Centre for AI, DNRF grant number
P1, the DIREC Bridge project Deep Learning and Automation of Imaging-
Based Quality of Seeds and Grains, Innovation Fund Denmark grant number
9142-00001B, and the Novo Nordisk Foundation grant NNF22OC0076907
”Cognitive spaces - Next generation explainability”.
©2025 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

and thereby create smaller, more efficient networks suitable for on-
device automatic speech recognition tasks.

Several studies have shown that transformer-based speech rep-
resentation models contain a substantial amount of redundancy [4,
5, 6, 7]. Recent research on large language models (LLMs) has re-
vealed that many layers and neurons can be pruned without signifi-
cantly impacting performance [8, 9, 10, 11]. Similar findings have
been observed in speech representation models, where pruning or
informed layer selection can lead to reduced computational require-
ments and faster inference times while retaining or even improving
performance [12, 13].

Moreover, a high degree of linearity was observed in transformer
models, further indicating potential redundancy [14]. It was demon-
strated that the embedding transformations between sequential lay-
ers exhibit near-perfect linearity, suggesting that many of these lay-
ers may be performing redundant operations. By identifying and
removing the most linear layers or replacing them with linear ap-
proximations, they show that it is possible to remove a few layers
without loss in performance.

Recent studies on knowledge distillation (KD) of speech rep-
resentation models have shown the potential to significantly reduce
the number of parameters while mostly maintaining performance in
many downstream tasks [15, 16, 17, 18]. Zampierin et al. [18] uti-
lize a similarity-aware strategy, leveraging redundancy of layers to
reduce the number of layers needed.

With this paper, we aim to investigate this redundancy system-
atically and leverage it in a pruning and KD approach for speech
representation models. Our main contributions include:

(1) A detailed analysis of similarity in speech representation
models, leveraging three similarity metrics. We find high similarity
between layers that presents itself in a block-like structure, suggest-
ing two main processing steps and high redundancy of layers.

(2) Evidence of the effectiveness of pruning transformer-based
speech representation models without the need for post-training. We
can remove up to 45% of the transformer layers without significant
loss in performance by structurally selecting layers leveraging the
block influence score [11]. We find that to maintain performance,
parts of both blocks identified using similarity metrics need to be
present.

(3) Significant reduction in the computational footprint of
transformer-based speech representation models while maintaining
95% of the models’ predictive capacity. By employing a knowledge
distillation approach and replacing the whole transformer stack with
mimicking layers, we can decrease the network size by an order of
magnitudes.

Our experiments consistently show high redundancy in the trans-
former layers of speech representation models, indicating that the

ar
X

iv
:2

40
9.

16
30

2v
2

 [
ee

ss
.A

S]
 1

7
Ja

n
20

25

transformer stack can be considerably minimized for downstream
applications to create more resource-efficient networks.

2. METHODS

We divide the transformer-based network into three parts. Let
f (i) : RD → Rd for i ∈ {1, . . . ,L} be the network up to layer i

(with embedding dimension d), let g(i) : Rd → Rd be the remaining
part of the network from layer i to L, and h : Rd → R|C| the clas-
sification layer. The composite function

(
h ◦

(
g(i) ◦ f (i)

))
(x) is

then the complete forward pass for an input x ∈ RD . For the rest
of this section, for simplicity we fix the notation: i, j ∈ {1, . . . ,L}
indices of transformer layers, X ∈ Rn×D a matrix of input data,
and A(i) = f (i)(X) ∈ Rn×d representation of input after layer i.

2.1. Layer Similarity

First, we perform an extensive analysis of latent representations af-
ter each transformer layer of several speech representation models
(see subsection 2.4), where we investigate the similarity between
layers to identify redundant information. We extract latent repre-
sentations of audio input after each transformer block and compare
the representations across layers, leveraging three similarity metrics,
namely cosine similarity, centered kernel alignment (CKA), and mu-
tual nearest neighbor alignment (mutual kNN). All metrics are in-
variant to isotropic scaling and orthogonal transformations imply-
ing permutation invariance. All scores depend on the input data X ,
which we omit in the notation for simplicity. Moreover, we center
all the representations.

The cosine similarity score between representations of X at lay-
ers i and j is defined as

Scos(i, j) =
1

n

n∑
l=1

(
A

(j)
l,·

)T

A
(i)
l,·∥∥∥A(i)

l,·

∥∥∥ ∥∥∥A(j)
l,·

∥∥∥ . (1)

We additionally consider the CKA metric [19]. In the linear
form, CKA is given by

SCKA(i, j) =

∥∥∥∥(A(j)
)T

A(i)

∥∥∥∥2

F∥∥∥(A(i))
T
A(i)

∥∥∥
F

∥∥∥(A(j))
T
A(j)

∥∥∥
F

. (2)

Acknowledging the ongoing discussion on the validity of sim-
ilarity metrics for learned representations [20], we consider the
locally-aware mutual kNN similarity score given by

SkNN (i, j) =
1

n

n∑
l=1

(
1

k

∣∣∣Nk

(
A

(i)
l,·

)
∩Nk

(
A

(j)
l,·

)∣∣∣) , (3)

where Nk

(
A

(i)
l,·

)
is the set of indices for the k-nearest samples of

A
(i)
l,· in the batch. We chose k = 8 based on the robustness of initial

experiments and previous studies [20].

2.2. Pruning

We investigate the relation between feature similarity patterns and
model redundancy by heuristically pruning the transformer stack.
The considered heuristics include forward and backward pruning,
i.e. pruning starting with the first or last transformer block, along

with pruning by the minimum Block Influence (BI) score BI (i) =
1−Scos(i− 1, i) [11] and a modified, locally-aware version relying
on mutual kNN similarity, SkNN , rather than cosine similarity, Scos.
For all heuristics, we prune by deleting whole transformer blocks in
the order determined by the heuristic, the first transformer block is
never pruned. The remaining blocks are stitched together without
any post-training.

2.3. Mimicking Networks - Knowledge Distillation

We propose a simple strategy for distilling knowledge from fine-
tuned audio models (teacher networks) based on reproducing inter-
mediate representations. We introduce a so-called mimicking net-
work, which is trained to replace the transformer stack using 1 or
2 mimicking layers. As illustrated in Figure 1, the mimicking net-
work learns to reproduce representations in the last layer L of the
teacher transformer stack and optionally also in the layer i. As
experimental parameters, we consider the layer type, i.e. Trans-
former (TransformerEncoderLayer from PyTorch) or linear
mimic layers (Figure 1 right), as well as their hidden dimensionality,
z ∈ {32, 768, 4096}. We ensure weight-sharing along the temporal
dimension. Each model is trained with a 2-stage procedure con-
sisting of 1) a mimicking phase using a mean squared error (MSE)
objective and 2) an adaptation phase for fine-tuning to the down-
stream task using a negative log likelihood (NLL) objective on the
log-probabilities (detailed loss function in Figure 1). For evaluating
the mimicking approach, we additionally explore randomly initial-
ized models that only consider the adaptation phase.

In the mimicking phase, models are trained for 50 epochs using
the training set with a batch size of 128, resulting in 33150 steps.
Model evaluation is carried out regularly on 1024 inputs randomly
sampled from the validation set. All models converged within the
training horizon. Subsequently, the adaption phase exploits the op-
timal weight set and trains for 30 epochs, i.e. 19890 steps. The opti-
mal models based on the validation set, i.e. before potential overfit-
ting, are saved. Based on initial experiments, all models are trained
with a fixed learning rate of 10−3.

All models are evaluated on the test set by individually predict-
ing the 4482 samples, and the inference time is measured after a
GPU warm-up of 300 steps (to ensure comparable conditions). We
report average performances and inference times including uncer-
tainty estimates given by the standard error of the mean.

2.4. Data & Models

All analyses consider a word classification task using the speech
commands v0.02 dataset [21], which features 35 words (i.e. classes)
spoken by more than 400 speakers. The dataset and its splits are ob-
tained from huggingface.co. All audio files are resampled to 16kHz
and padded/restricted to 1 second, and the silence class is excluded
for the analyses.

We consider the base and large fine-tuned versions of
wav2vec2 [3] and wavLM [2]. All models follow the same trans-
former architecture [22] with 12 or 24 transformer stacks and were
fine-tuned on the train set to perform classification of the 35 words,
with a learning rate of 2x10−5 for 10000 steps. The final accuracy
on the test set of the models is 98.32 / 97.21% for wav2vec2
(base/large) and 97.22 / 98.86% for wavLM (base/large).

https://huggingface.co/datasets/google/speech_commands

Fig. 1. Conceptual overview of mimicking networks. Left: The general transformer model, consisting of a feature extractor module, the
transformer stack and a classification/probing layer. We denote the first part of the network until layer i by f (i) the remaining part of the
network from layer i to L by g(i), and the classification layer by h. Middle: A 2-layer mimicking network where m

(i)
f and m

(i)
g represent

mimicked representations of f (i) and g(i), respectively, learned via the step-1-loss. In step 2, the classifier, h, and mimicking layers are then
finetuned for the downstream task. Right: Design of the mimicking layer that maps an input embedding of dimension d to a z-dimensional
representation before mapping it back to the original shape.

3. RESULTS & DISCUSSION

3.1. Layer Similarity

First, we explore the similarity structure between layers. Our analy-
sis reveals that all models exhibit two primary blocks characterized
by highly similar latent representations throughout each block (see
Figure 2a). The first block consists of approximately two-thirds to
three-quarters of the transformer layers, while the second block typ-
ically comprises the final four to five layers. These findings suggest
a significant degree of redundancy within these blocks, raising ques-
tions about the necessity of all layers. Similar block structures have
been observed (but not further investigated) in convolutional mod-
els [19] and other speech representation models [18], with varying
numbers and dimensions of the blocks depending on the models and
tasks.

When comparing the three similarity metrics, CKA and mutual
kNN exhibit the block structure more distinctly than cosine similar-
ity. Consistent with recent debates on similarity metrics [19, 20],
our findings indicate that CKA and mutual kNN more accurately
capture similarity structures, and mutual kNN reveals additional de-
tails within the blocks. This further indicates the potential benefit of
pruning according to local rather than global similarity structure.

3.2. Layer-Wise Pruning

Given the high similarity and therefore potential redundancy of the
transformer layers, we investigate how many layers can be pruned,
i.e. simply deleted without retraining, before significantly impact-
ing performance. For all models, we can prune a substantial number
of layers before we see a significant drop in performance (see Fig-
ure 2b). When using BI or kNN-BI to prune the least important lay-
ers first, we can prune 25-42% of layers while maintaining 95% of
the original performance. Interestingly, when pruning forward (not
pruning the very first layer), we see very similar results, where we
can prune almost up to the same amount of layers, which indicates
that especially early layers within the first block are redundant.

When pruning backward or forward, the performance drops
completely after removing either of the blocks identified earlier
(with exception of wavLM large, where the performance already
drops after removing half of the first block). In Figure 2c it becomes

apparent that the performance is maintained only as long as parts
of both blocks are still present, highlighting the importance of both
processing steps.

Other studies have shown that by retraining after layer-wise
pruning, models can regain full performance or, in some cases, even
improve performance in speech representations models [13] and
LLMs [23]. This highlights how redundant layers are not only a
computational burden, but are also unnecessary or even harmful to
keep.

3.3. Mimicking Networks

Is the transformer stack completely redundant? To answer this ques-
tion, we substitute the transformer stack with mimicking layers.
Based on the two blocks we find during the similarity analysis, we
first test two mimicking layers, with the intermediate mimicked
layer i being the last layer of the first block. We compare these
results to only using one mimicking layer, directly learning the final
representations, as well as to using just a linear or transformer layer
instead, directly trained for classification. These substitutions lead
to a parameter reduction of up to 95% in base models and up to
98% in large models and a reduction of the inference time of up to
94% (seeFigure 3 and Figure 4-6 in the appendix). Most models
retain more than 95% of the performance while achieving these high
reductions in size and therefore also inference time. This is a higher
reduction, while maintaining comparable performance, than in re-
cent studies on KD of speech representation models [15, 16, 17, 18]
and a much higher reduction in size than in pruning studies on
speech representation models [5, 12, 13]. Although our method
does not bring significant improvements over other state-of-the-art
distillation methods, it demonstrates the high redundancy of the
transformer stack and highlights the potential for significant reduc-
tions in size and computational load.

Interestingly, we do not observe a significant difference in
performance between using one or two mimicking layers, indi-
cating that intermediate representations are not essential for the
downstream task. We found that increasing the hidden dimension-
ality of the mimicking layer (z) slightly improved performance,
although z = 4096 often led to model overfitting. While trans-
former mimicker layers generally produced the best results, using

Fig. 2. Analysis of redundancy of layers using similarity measures and pruning of layers: (a) Similarity between layers of wav2vec2 and
wavLM. All three metrics (cosine similarity, CKA, mutual kNN) reveal a block structure. (b) Effect of pruning on performance, using four
different pruning objectives. Up to 45% of layers can be pruned while maintaining 95% of accuracy (). After pruning most layers, the
model performance drops to random chance (). Uncertainty ranges cover the empirical 2.5 and 97.5 quantiles obtained from N = 5 runs.
(c) Visualisation of pruned layers on top of the kNN similarity matrix (with 50% performance threshold). Light layers indicate pruned layers,
dark layers are still present. Backward and forward pruning (left+middle) only preserve performance as long as both blocks are still present.
Pruning based on kNN-BI (right) prunes layers mainly in the first block.

Fig. 3. Simplification of transformer stack using mimicking net-
works. Reduction in inference time (up to 87%) and number of pa-
rameters (up to 95%) using mimicking networks, while maintaining
95% of the original accuracy (). We test transformer and linear
layers with different dimensions z. Inference time is normalized to
1 (inference time of original model), the pruned model has 3 layers
pruned using kNN-BI. These results are for wav2vec2, results for
other models are in the appendix.

a single transformer or linear layer without mimicking steps also
demonstrated impressive performance, suggesting the exact rep-
resentations learned by the transformer stack to be non-critical.
However, eliminating the transformer stack and relying solely on the
final linear layer for classification resulted in a substantial perfor-
mance drop to 79% accuracy, implying some degree of non-linearity
is required to maintain performance. These findings suggest that
the transformer stack is not needed for downstream applications and
can be replaced by a single non-linear layer. The redundancy of the
transformer stack has also been found by Kostas et al. [24] in an
EEG transformer model, where the transformer stack was benefi-
cial for pretraining but not critical or even harmful for downstream
applications.

4. CONCLUSION

Our findings indicate a significant degree of redundancy within
the transformer layers of speech representation models. This redun-
dancy is evident from the high similarity between layers, particularly
within the two primary blocks identified in our analysis. The abil-
ity to prune 15-45% of transformer layers without retraining while
mostly maintaining performance further underscores the significant
redundancy present in transformer layers within speech representa-
tion models. The two main blocks found in the similarity analysis
seem to be critical for performance, as fully pruning either block
results in a massive drop in performance. However, within these
blocks many layers can be pruned, suggesting high redundancy
within each block.

Our exploration of mimicking networks suggests that the entire
transformer stack can be replaced with a much smaller and faster
network, while maintaining over 95% of performance, highlighting
the high redundancy of the transformer stack in speech representa-

tion models. This potential of reducing the model to a model or-
der of magnitudes smaller and faster than the original model is also
supported by recent studies on KD in speech representation mod-
els [15, 16, 17, 18]. All of these findings highlight the potential
for substantial reduction in size and computational load enabling
practical applications in on-device automatic speech recognition and
resource-constrained environments.

5. REFERENCES

[1] Shu-Wen Yang et al., “SUPERB: speech processing universal
performance benchmark,” in Interspeech 2021, 22nd Annual
Conference of the International Speech Communication Asso-
ciation. 2021, pp. 1194–1198, ISCA.

[2] Sanyuan Chen et al., “Wavlm: Large-scale self-supervised pre-
training for full stack speech processing,” IEEE Journal of
Selected Topics in Signal Processing, vol. 16, no. 6, pp. 1505–
1518, 2022.

[3] Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and
Michael Auli, “wav2vec 2.0: A framework for self-supervised
learning of speech representations,” Advances in neural infor-
mation processing systems, vol. 33, pp. 12449–12460, 2020.

[4] Andy T Liu, Shang-Wen Li, and Hung-yi Lee, “Tera: Self-
supervised learning of transformer encoder representation for
speech,” IEEE/ACM Transactions on Audio, Speech, and Lan-
guage Processing, vol. 29, pp. 2351–2366, 2021.

[5] Yifan Peng, Kwangyoun Kim, Felix Wu, Prashant Sridhar, and
Shinji Watanabe, “Structured pruning of self-supervised pre-
trained models for speech recognition and understanding,” in
ICASSP 2023-2023 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP). IEEE, 2023, pp.
1–5.

[6] Shucong Zhang, Erfan Loweimi, Peter Bell, and Steve Re-
nals, “On the usefulness of self-attention for automatic speech
recognition with transformers,” in 2021 IEEE Spoken Lan-
guage Technology Workshop (SLT). IEEE, 2021, pp. 89–96.

[7] Hassan Sajjad, Fahim Dalvi, Nadir Durrani, and Preslav
Nakov, “On the effect of dropping layers of pre-trained trans-
former models,” Computer Speech & Language, vol. 77, pp.
101429, 2023.

[8] Fahim Dalvi, Hassan Sajjad, Nadir Durrani, and Yonatan Be-
linkov, “Analyzing redundancy in pretrained transformer mod-
els,” arXiv preprint arXiv:2004.04010, 2020.

[9] Yifei Yang, Zouying Cao, and Hai Zhao, “Laco: Large
language model pruning via layer collapse,” arXiv preprint
arXiv:2402.11187, 2024.

[10] Andrey Gromov, Kushal Tirumala, Hassan Shapourian,
Paolo Glorioso, and Daniel A Roberts, “The unreason-
able ineffectiveness of the deeper layers,” arXiv preprint
arXiv:2403.17887, 2024.

[11] Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang,
Hongyu Lin, Yaojie Lu, Xianpei Han, and Weipeng Chen,
“Shortgpt: Layers in large language models are more redun-
dant than you expect,” arXiv preprint arXiv:2403.03853, 2024.

[12] Ankita Pasad, Bowen Shi, and Karen Livescu, “Compara-
tive layer-wise analysis of self-supervised speech models,” in
ICASSP 2023-2023 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP). IEEE, 2023, pp.
1–5.

[13] Teresa Dorszewski, Lenka Tětková, and Lars Kai Hansen,
“Convexity-based pruning of speech representation models,”
2024 IEEE 34th International Workshop on Machine Learning
for Signal Processing (MLSP), 2024.

[14] Anton Razzhigaev, Matvey Mikhalchuk, Elizaveta Gon-
charova, Nikolai Gerasimenko, Ivan Oseledets, Denis Dim-
itrov, and Andrey Kuznetsov, “Your transformer is secretly
linear,” arXiv preprint arXiv:2405.12250, 2024.

[15] Xiaoyu Yang, Qiujia Li, and Philip C Woodland, “Knowledge
distillation for neural transducers from large self-supervised
pre-trained models,” in ICASSP 2022-2022 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2022, pp. 8527–8531.

[16] Yifan Peng, Yui Sudo, Shakeel Muhammad, and Shinji Watan-
abe, “Dphubert: Joint distillation and pruning of self-
supervised speech models,” arXiv preprint arXiv:2305.17651,
2023.

[17] Kuan-Po Huang, Tzu-Hsun Feng, Yu-Kuan Fu, Tsu-Yuan
Hsu, Po-Chieh Yen, Wei-Cheng Tseng, Kai-Wei Chang, and
Hung-Yi Lee, “Ensemble knowledge distillation of self-
supervised speech models,” in ICASSP 2023-2023 IEEE In-
ternational Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP). IEEE, 2023, pp. 1–5.

[18] Luca Zampierin, Ghouthi Boukli Hacene, Bac Nguyen, and
Mirco Ravanelli, “Skill: Similarity-aware knowledge distil-
lation for speech self-supervised learning,” arXiv preprint
arXiv:2402.16830, 2024.

[19] Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Ge-
offrey Hinton, “Similarity of neural network representations
revisited,” in International conference on machine learning.
PMLR, 2019, pp. 3519–3529.

[20] Minyoung Huh, Brian Cheung, Tongzhou Wang, and Phillip
Isola, “The platonic representation hypothesis,” arXiv preprint
arXiv:2405.07987, 2024.

[21] P. Warden, “Speech Commands: A Dataset for Limited-
Vocabulary Speech Recognition,” ArXiv e-prints, Apr. 2018.

[22] A Vaswani, “Attention is all you need,” Advances in Neural
Information Processing Systems, 2017.

[23] Chun Fan, Jiwei Li, Xiang Ao, Fei Wu, Yuxian Meng, and
Xiaofei Sun, “Layer-wise model pruning based on mutual in-
formation,” arXiv preprint arXiv:2108.12594, 2021.

[24] Demetres Kostas, Stephane Aroca-Ouellette, and Frank Rudz-
icz, “Bendr: Using transformers and a contrastive self-
supervised learning task to learn from massive amounts of eeg
data,” Frontiers in Human Neuroscience, vol. 15, pp. 653659,
2021.

A. APPENDIX / SUPPLEMENTAL MATERIAL

We present the data behind Figure 3 (see Table 1) along with experiments of mimicking networks for the wav2vec2-large, wavLM-small
and wavLM-large. Note that the L and T respectively denote linear and transformer layers, while z is the hidden dimension of the layer(s).

Results of simplification of networks using mimicking networks. In wav2vec2-large (Figure 4 and Table 2) and wavLM-small
(Figure 5 and Table 3) the models keep over 95% of their original performance while reducing the number of parameters by 95-98% and the
inference time by up to 91%. In wavLM-large (Figure 6 and Table 4) the performance is still above 90% of the original performance while
reducing the size by 98% and the inference time by 94%.

Network Layer N z Number of Inference time Accuracy
type type layers parameters (normalized)

Original T 12 - 94577571 1 0.976± 0.002

Mimicker L 1 32 4851331 0.13 0.919± 0.004
Mimicker L 2 32 4901283 0.14 0.925± 0.004
Mimicker L 1 768 5984035 0.14 0.942± 0.003
Mimicker L 2 768 7165219 0.14 0.938± 0.004
Mimicker L 1 4096 11105827 0.15 0.935± 0.004
Mimicker L 2 4096 17402147 0.16 0.934± 0.004

Mimicker T 1 32 7216707 0.14 0.936± 0.004
Mimicker T 2 32 9632099 0.16 0.934± 0.004
Mimicker T 1 768 8347939 0.15 0.921± 0.004
Mimicker T 2 768 11894563 0.16 0.942± 0.003
Mimicker T 1 4096 13463075 0.16 0.945± 0.003
Mimicker T 2 4096 22124835 0.18 0.944± 0.003

Non-mimicker L 1 32 4851331 0.13 0.916± 0.004
Non-mimicker L 1 768 5984035 0.14 0.936± 0.004
Non-mimicker L 1 4096 11105827 0.14 0.945± 0.003

Non-mimicker T 1 32 7216707 0.14 0.93± 0.004
Non-mimicker T 1 768 8347939 0.15 0.931± 0.004
Non-mimicker T 1 4096 13463075 0.16 0.925± 0.004

Table 1. wav2vec2-small

Fig. 4. wav2vec2-large

Network Layer N z Number of Inference time Accuracy
type type layers parameters (normalized)

Original T 24 - 315700387 1 0.971± 0.002

Mimicker L 1 32 5064835 0.089 0.921± 0.004
Mimicker L 2 32 5131427 0.091 0.924± 0.004
Mimicker L 1 768 6574371 0.09 0.938± 0.004
Mimicker L 2 768 8149027 0.094 0.94± 0.004
Mimicker L 1 4096 13400099 0.097 0.945± 0.003
Mimicker L 2 4096 21793827 0.11 0.943± 0.003

Mimicker T 1 32 9267267 0.098 0.927± 0.004
Mimicker T 2 32 13536355 0.11 0.931± 0.004
Mimicker T 1 768 10775331 0.099 0.937± 0.004
Mimicker T 2 768 16552483 0.11 0.938± 0.004
Mimicker T 1 4096 17594403 0.11 0.94± 0.004
Mimicker T 2 4096 30190627 0.12 0.937± 0.004

Non-mimicker L 1 32 5064835 0.088 0.917± 0.004
Non-mimicker L 1 768 6574371 0.09 0.937± 0.004
Non-mimicker L 1 4096 13400099 0.097 0.939± 0.004

Non-mimicker T 1 32 9267267 0.098 0.925± 0.004
Non-mimicker T 1 768 10775331 0.1 0.936± 0.004
Non-mimicker T 1 4096 17594403 0.11 0.929± 0.004

Table 2. wav2vec2-large

Fig. 5. wavLM-small

Fig. 6. wavLM-large

Network Layer N z Number of Inference time Accuracy
type type layers parameters (normalized)

Original T 12 - 94587795 1 0.972± 0.002

Mimicker L 1 32 4851331 0.097 0.889± 0.005
Mimicker L 2 32 4901283 0.099 0.91± 0.004
Mimicker L 1 768 5984035 0.1 0.938± 0.004
Mimicker L 2 768 7165219 0.1 0.936± 0.004
Mimicker L 1 4096 11105827 0.1 0.939± 0.004
Mimicker L 2 4096 17402147 0.11 0.932± 0.004

Mimicker T 1 32 7216707 0.1 0.903± 0.004
Mimicker T 2 32 9632099 0.11 0.928± 0.004
Mimicker T 1 768 8347939 0.11 0.928± 0.004
Mimicker T 2 768 11894563 0.12 0.933± 0.004
Mimicker T 1 4096 13463075 0.11 0.928± 0.004
Mimicker T 2 4096 22124835 0.13 0.932± 0.004

Non-mimicker L 1 32 4851331 0.097 0.885± 0.005
Non-mimicker L 1 768 5984035 0.1 0.921± 0.004
Non-mimicker L 1 4096 11105827 0.1 0.924± 0.004

Non-mimicker T 1 32 7216707 0.1 0.915± 0.004
Non-mimicker T 1 768 8347939 0.11 0.915± 0.004
Non-mimicker T 1 4096 13463075 0.11 0.923± 0.004

Table 3. wavLM-small

Network Layer N z Number of Inference time Accuracy
type type layers parameters (normalized)

Original T 24 - 315724515 1 0.989± 0.002

Mimicker L 1 32 5070979 0.064 0.859± 0.005
Mimicker L 2 32 5137571 0.065 0.876± 0.005
Mimicker L 1 768 6580515 0.065 0.906± 0.004
Mimicker L 2 768 8155171 0.067 0.93± 0.004
Mimicker L 1 4096 13406243 0.069 0.915± 0.004
Mimicker L 2 4096 21799971 0.075 0.913± 0.004

Mimicker T 1 32 9273411 0.07 0.849± 0.005
Mimicker T 2 32 13542499 0.076 0.828± 0.006
Mimicker T 1 768 10781475 0.07 0.888± 0.005
Mimicker T 2 768 16558627 0.079 0.829± 0.006
Mimicker T 1 4096 17600547 0.075 0.91± 0.004
Mimicker T 2 4096 30196771 0.086 0.821± 0.006

Non-mimicker L 1 32 5070979 0.064 0.88± 0.005
Non-mimicker L 1 768 6580515 0.064 0.893± 0.005
Non-mimicker L 1 4096 13406243 0.069 0.905± 0.004

Non-mimicker T 1 32 9273411 0.07 0.907± 0.004
Non-mimicker T 1 768 10781475 0.071 0.907± 0.004
Non-mimicker T 1 4096 17600547 0.075 0.89± 0.005

Table 4. wavLM-large

	 Introduction
	 Methods
	 Layer Similarity
	 Pruning
	 Mimicking Networks - Knowledge Distillation
	 Data & Models

	 Results & Discussion
	 Layer Similarity
	 Layer-Wise Pruning
	 Mimicking Networks

	 Conclusion
	 References
	 Appendix / supplemental material

