Staying on the Manifold: Geometry-Aware Noise Injection

Albert Kjøller Jacobsen*, Johanna Marie Gegenfurtner* and Georgios Arvanitidis Section for Cognitive Systems - Technical University of Denmark *Equal contribution, listed in arbitrary order

Motivation

Training ML models with input noise can improve robustness and influence generalisation.

Bishop [1] proves that training with Gaussian input noise penalises the trace of the Hessian in expectation:

$$\mathbb{E}_{\epsilon}\left[\mathcal{L}\left(\boldsymbol{x}+\boldsymbol{\epsilon}\right)\right]=\mathcal{L}\left(\boldsymbol{x}\right)+rac{\sigma^{2}}{2}\Delta_{x}\mathcal{L}\left(\boldsymbol{x}\right)$$

where $\epsilon \sim \mathcal{N}\left(\mathbf{0}, \eta^2 \mathbb{I}_D\right)$

RQ: Can we improve **generalization** by adding geometry-aware noise to the data?

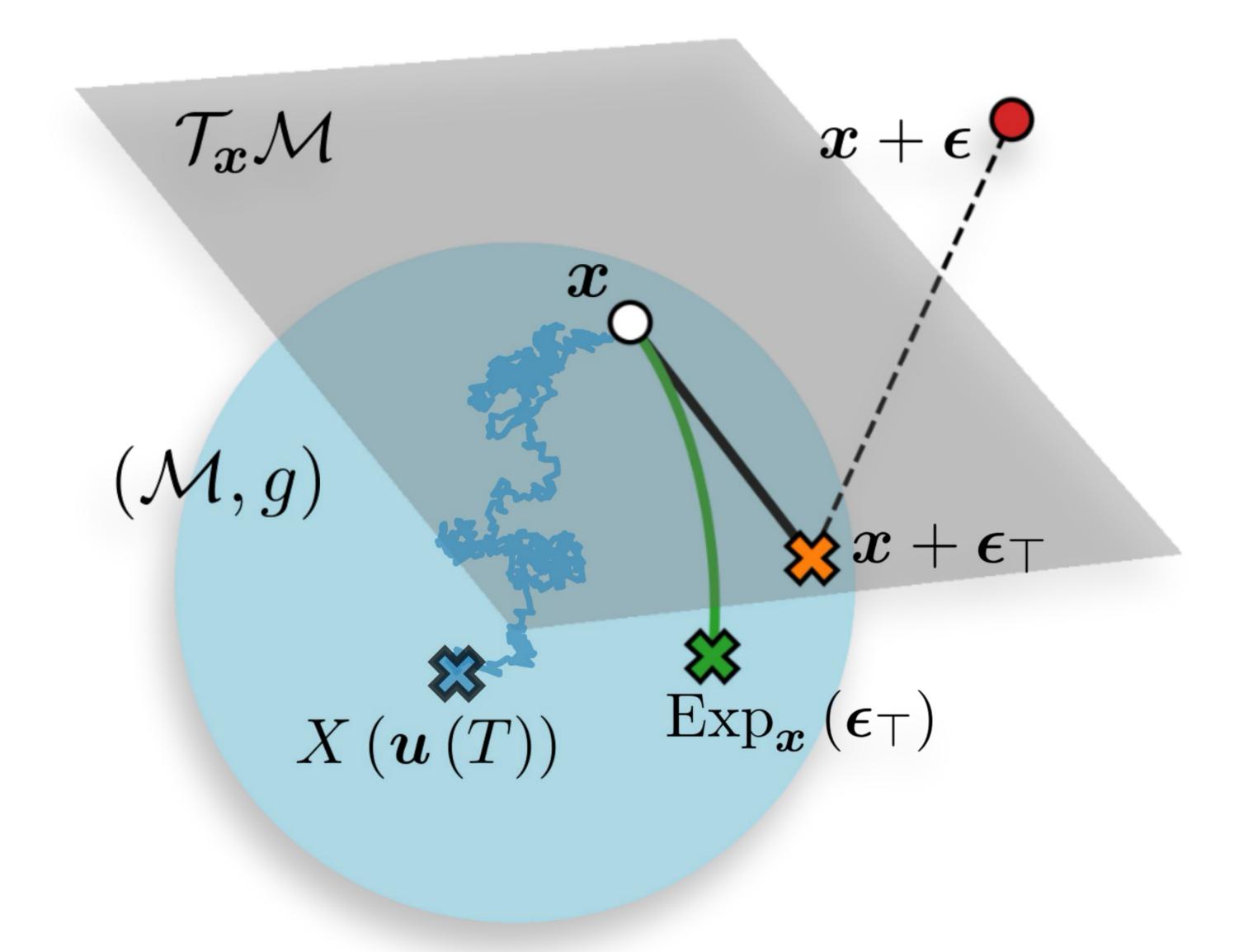
TL;DR: Yes – constraining noisy inputs to lie on the data manifold can improve generalization!

Noise Injection Strategies [2,3]

- tangential: Gaussian noise projected to the tangent space.
- **geodesic**: mapping tangent vectors to the manifold.
- Brownian motion: walking along the manifold randomly.

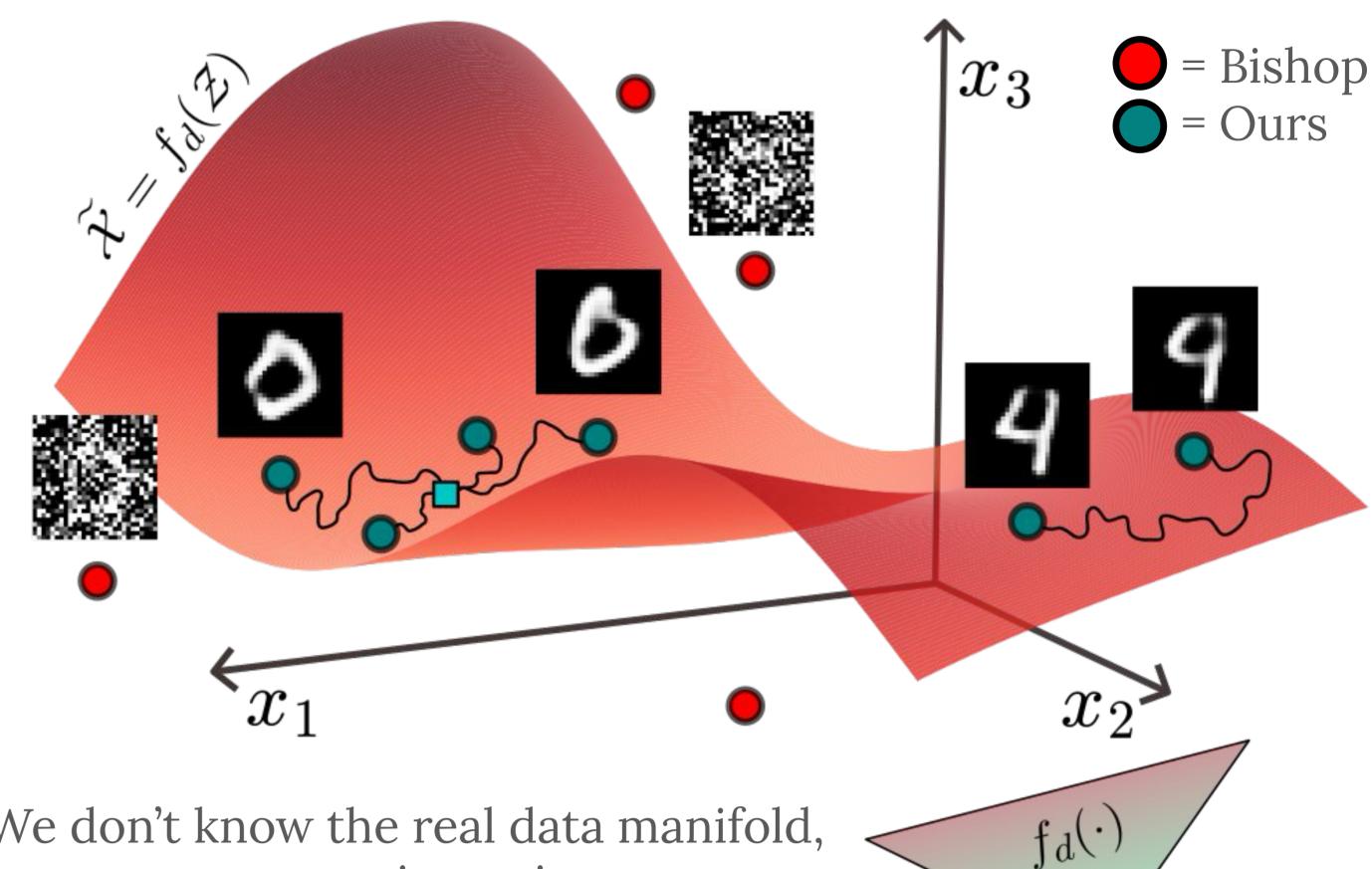
This penalises the tangential part of the Tikhonov regulariser:

$$R(\boldsymbol{x}, \boldsymbol{\theta}) = \frac{\sigma^2}{2} \sum_{n=1}^{N} \|\nabla_x f_{\theta}(\boldsymbol{x}_n)_{\top}\|^2$$



- 1. Bishop, "Training with Noise is equivalent to Tikhonov regularization", Neural Computation (1995)
- 2. Hsu, "Brownian motion and Riemannian geometry." Contemp. Math 73 (1988)
- 3. Girolami & Calderhead, "Riemann manifold Langevin and Hamiltonian Monte Carlo methods". 2011

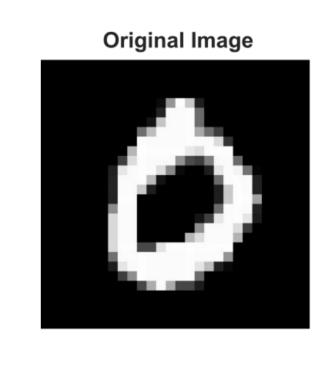
Approximating the Data Manifold

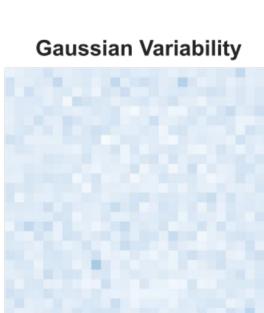


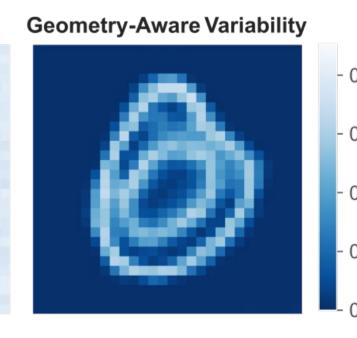
We don't know the real data manifold, but we can approximate it:

- using a **generative model**, or
- using an autoencoder.

Our augmented samples are natural variations of the original sample!







Results

On MNIST, our geometry-aware strategy:

- improves in highly overparameterised settings,
- suffers from a manifold approximation gap,
- yet consistently improves over training on reconstructions.

MNIST: Performance when subsampling the training data

	1%	10%	50%
O	0.883 ± 0.008	0.956 ± 0.002	0.981 ± 0.001
A	0.883 ± 0.008	$\boldsymbol{0.965 \pm 0.001}$	$\boldsymbol{0.981 \pm 0.001}$
\mathbb{R}	0.877 ± 0.005	0.943 ± 0.002	0.967 ± 0.002
BM	$\boldsymbol{0.896 \pm 0.008}$	0.959 ± 0.002	0.971 ± 0.001

Improved performance on "wiggly"/curved toy manifolds:

	Sphere	SwissRoll
В	1.00 ± 0.16	1.00 ± 0.18
A	$\textbf{0.91} \pm \textbf{0.10}$	1.00 ± 0.19
${f T}$	0.98 ± 0.14	0.62 ± 0.07
\mathbf{G}	1.00 ± 0.16	0.47 ± 0.06
BM	1.00 ± 0.16	$\textbf{0.46}\pm\textbf{0.06}$
nifold		

